
Software Repository Mining with Marmoset: An Automated
Programming Project Snapshot and Testing System

Jaime Spacco, Jaymie Strecker, David Hovemeyer, and William Pugh
Dept. of Computer Science

University of Maryland
College Park, MD, 20742 USA

{jspacco,strecker,daveho,pugh}@cs.umd.edu

ABSTRACT
Most computer science educators hold strong opinions about
the “right” approach to teaching introductory level pro-
gramming. Unfortunately, we have comparatively little hard
evidence about the effectiveness of these various approaches
because we generally lack the infrastructure to obtain suffi-
ciently detailed data about novices’ programming habits.

To gain insight into students’ programming habits, we de-
veloped Marmoset, a project snapshot and submission sys-
tem. Like existing project submission systems, Marmoset
allows students to submit versions of their projects to a cen-
tral server, which automatically tests them and records the
results. Unlike existing systems, Marmoset also collects fine-
grained code snapshots as students work on projects: each
time a student saves her work, it is automatically committed
to a CVS repository.

We believe the data collected by Marmoset will be a rich
source of insight about learning to program and software
evolution in general. To validate the effectiveness of our
tool, we performed an experiment which found a statistically
significant correlation between warnings reported by a static
analysis tool and failed unit tests.

To make fine-grained code evolution data more useful,
we present a data schema which allows a variety of useful
queries to be more easily formulated and answered.

1. INTRODUCTION
While most computer science educators hold strong opin-

ions about the “right” way to teach introductory level pro-
gramming, there is comparatively little hard evidence to
support these opinions. The lack of evidence is especially
frustrating considering the fundamental importance to our
discipline of teaching students to program. We believe that
the lack of evidence is at least partly attributable to a lack
of suitable infrastructure to collect quantitative data about
students’ programming habits.

To collect the desired data, we have developed Marmoset,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’05 St. Louis, MO USA
Copyright 2005 ACM 1-59593-123-6/05/0005 ...$5.00.

an automated project snapshot, submission, and testing sys-
tem. Like many other project submission and testing sys-
tems ([11, 6, 7, 4]), Marmoset allows students to submit
versions of their work on course projects and to receive au-
tomatic feedback on the extent to which submissions meet
the grading criteria for the project. The grading criteria are
represented by JUnit [8] tests, which are automatically run
against each version of the project submitted by the student.
In addition to JUnit tests, Marmoset also supports running
the student’s code through static analysis tools such as bug
finders or style checkers. Currently the only supported static
checker is FindBugs [5]; we plan on trying with other static
analysis tools such as PMD [10] and CheckStyle [1] in the
future.

A novel feature of Marmoset is that in addition to collect-
ing submissions explicitly submitted by students, an Eclipse
[3] plugin called the Course Project Manager [13] automati-
cally captures snapshots of a student’s code to the student’s
CVS [2] repository each time she saves her files. These inter-
mediate snapshots provide a detailed view of the evolution
of student projects, and constitute the raw data we used as
the basis for the experiments described in this paper.

Students can log in to the SubmitServer to view the results
of the unit tests and examine any warnings produced by
static checkers. The test results and static analysis warnings
are divided into four categories:

• Public Tests: The source code for the public tests is
made available to students upon their initial checkout
of a project, and the results of public tests for submit-
ted projects are always visible to students. (Students
should already know these results since they can run
these tests themselves).

• Release Tests: Release tests are additional unit tests
whose source code is not revealed to students. The out-
comes of release tests are only displayed to students if
they have passed all of the public tests. Rather than
allowing students unlimited access to release test re-
sults (as we do with public tests results), we allow lim-
ited access as follows. Viewing release tests costs one
“release token”. Students receive three release tokens
for each project and these tokens regenerate every 24
hours. Viewing release results allows the student to see
the number of release tests passed and failed as well as
the names of the first two tests failed. For example,
for a project requiring the evaluation of various poker
hands, a student may discover that they have passed

6 out of 12 release tests and that the first two tests
failed were testThreeOfAKind and testFullHouse. We
have tried to make the release test names descriptive
enough to give the student some information about
what part of their submission was deficient, but vague
enough to make the students think seriously about how
to go about fixing the problem.

• Secret Tests: Like release tests, the code for secret tests
is also kept private. Unlike release tests, the results of
secret tests are never displayed to the students. These
are equivalent to the private or secondary tests many
instructors use for grading purposes. Although our
framework supports them, the courses on which we
report in this paper did not use any secret tests.

• Static Checker Warnings: We have configured Mar-
moset to run FindBugs on every submission and make
the warnings visible to students. FindBugs warnings
are provided solely to help students debug their code
and to help us tune FindBugs; the results of FindBugs
are not used for grading.

When compared to previous work, we feel Marmoset im-
proves data collection in two major ways. First, by using
the Course Project Manager Eclipse plugin, we can gather
frequent snapshots of student code automatically and unob-
trusively. Prior work on analyzing student version control
data [9] focused on data that required the students to man-
ually commit their code. One observation made by Liu et.
al. is that students often don’t use version control systems
in a consistent manner. The Course Project Manager plugin
has no such limitation.

Second, by providing the same testing framework for both
development and grading, we can quantify the correctness
of any snapshot along the development timeline of a project.
This allows us to perform statistical analyses of the devel-
opment history of each student.

2. STUDENT SNAPSHOT DATA
Of the 102 students in the University of Maryland CMSC

132 Fall 2004 course, 73 consented to be part of an IRB ap-
proved experimental study of how students learn to develop
software. Other than signing a consent form and filling out
an optional online survey about demographic data and prior
programming experience, students participating in the ex-
periment did not experience the course any differently than
other students in the course, as the data collected for this
research is routinely used during the semester to provide
students with regular backups, automated testing and a dis-
tributed file system. From the 73 students who consented
to participate in the study, we extracted from their CVS
repositories over 51,502 snapshots, of which about 41,333
were compilable. Of the compilable snapshots, 33,015 com-
piled to a set of classfiles with a unique MD5 sum.

That 20% of the snapshots did not compile is not sur-
prising, as snapshots are triggered by saving. In fact, we
were pleasantly surprised that so many of our snapshots did
compile.

We tested each unique snapshot on the full suite of unit
tests written for that project. In addition, we checked each
unique snapshot with the static bug finder FindBugs [5] and
stored the results in the database. We also computed the
CVS diff of the source of each unique submission with the

students 73
projects 8
student projects 569
snapshots 51,502

compilable 41,333
unique 33,015
total test outcomes 505,423

not implemented 67,650
exception thrown 86,947
assertion failed 115,378
passed 235,448

Table 1: Overall numbers for project snapshots and
test outcomes

Exception
yes no

Warning Warning
Problem yes no yes no

ClassCast 362 1,775 1,306 30,878
enhanced 1,047 1,477 n/a n/a

StackOverflow 279 1,140 2 31,594
enhanced 935 793 n/a n/a

Null Pointer 267 5,863 382 26,503

Table 2: Correlation between selected warnings and
Exceptions

source of the preceding unique submission, and stored the
total number of lines added or changed as well as the net
change to the size of the files (we do not track deletes ex-
plicitly, though deletes do show up indirectly as net changes
to the size of the source files).

We have performed a number of different kinds of analy-
sis on the data, and continue to generate additional results.
Unfortunately, space only allows us to present a small win-
dow into our research.

We have looked both at the changes between successive
snapshots by an individual student, and at the features of
each snapshot in isolation. When looking at changes be-
tween successive snapshots, we can examine the change in
warnings between successive versions and whether there is
any corresponding change in the number of unit test faults
between versions. We can also look at the size of changes,
and even manually examining the differences between ver-
sions where our defect warnings do not seem to correspond
to the difference in actual faults (e.g., if a one line change
caused a program to stop throwing NullPointerExceptions,
but no change occurred in the number of defect warnings
generated, is there something missing in our suite of defect
detection tools?). While we have some results from this
analysis, the complexity of those results makes them hard
to present in the space available.

3. CORRELATION BETWEEN WARNINGS
AND EXCEPTIONS

In this section, we show the correlation between selected
bug detectors and the exceptions that would likely corre-
spond to the faults identified by these detectors. We look
at ClassCastExceptions, StackOverflowError and NullPoint-

erExceptions. Before starting work on finding bugs in stu-
dent code, we didn’t have any bug detectors for ClassCas-
tExceptions or StackOverflowErrors. Based on our experi-
ence during class and leading up to this paper, we wrote
some detectors for each. Table 2 shows the correlation be-
tween exceptions and the corresponding bug detectors.

ClassCastExceptions typically arise in student code be-
cause of:

• An incorrect cast out of a collection. We believe that
many of these would be caught by uses of parameter-
ized collections.

• A collection is downcast to more specific class

(Set)Map.values()

• A cast to or from an interface that will not succeed
in practice, but the compiler cannot rule out since it
can’t assume new classes will not be introduced. In
the example below, although WebPage does not im-
plement Map, we cannot rule out the possibility that
a new class could be written that extends WebPage
and implements Map:

public void crawl(WebPage w) {

Map crawlMap = (Map)w;

• A cast where static analysis dooms the cast, even if
additional classes are written, but the programmer has
gone to some length to confuse the compiler:

public WebPage(URL u) {

this.webpage = (WebPage)((Object)u);...+

We have written detectors to check for the last three casts.
Surprising, all three (even the last one) also identify prob-
lems in production code; an instance of the the last error
occurs in the Apache Xalan library.

The last two detectors for ClassCastExceptions were only
written shortly before the camera-ready deadline based on
manual examination of the snapshots that generated Class-
CastExceptions but were not flagged as possibly containing
a bad cast. The numbers with those detectors included are
reported on the line labeled enhanced. By the camera-ready
deadline, we were unable to rerun the detectors on the 30,878
snapshots in which no ClassCastException occurred to see
how many false positives they generated.

Many of the StackOverflowErrors are caused by code that
obviously implements infinite recursive loops, such as:

WebSpider() {

WebSpider w = new WebSpider(); }

We wrote an initial detector based on experience during the
fall semester, and that detector also found a number of in-
finite recursive loops in production code such as Sun’s JDK
1.5.0 and Sun’s NetBeans IDE.

Based on manual examination of snapshots that threw
StackOverflowError but were not flagged as containing re-
cursive infinite loops, we improved the detectors shortly be-
fore the camera-ready deadline. The numbers with the en-
hanced detector are reported on the line labeled enhanced.
By the camera-ready deadline, we were unable to rerun the

detectors on the 31,596 snapshots in which no StackOver-
flowError occurred to see how many false positives they gen-
erated.

For the NullPointerExceptions, we report just the detec-
tors that perform dataflow analysis to report possible Null-
PointerExceptions. We also have detectors that look for
uninitialized fields containing references (not reported in this
table); these are also the source of a number of exceptions,
but they have a higher false positive rate than the field based
detectors.

4. SCHEMA FOR REPRESENTING PRO-
GRAM EVOLUTION

Our current analysis is somewhat limited, in that we can
only easily measure individual snapshots, or changes be-
tween successive versions. We can’t easily track, for ex-
ample, which changes are later modified.

We want to be able to integrate code versions, test results,
code coverage from each test run, and warnings generated
by static analysis tools. In particular, we want to be able to
ask questions such as:

• Which methods were modified during the period 6pm-
9pm?

• During the period 6pm-9pm, which methods had more
than 30 line modifications or deletions?

• Of the changes that modified a strcpy call into a strncpy
call, how frequently was the line containing the strncpy
call, or some line no more than 5 lines before it, mod-
ified in a later version?

• For each warning generated by a static analysis tool,
which versions contain that warning?

• Which warnings are fixed shortly after they are pre-
sented to students, and which are ignored (and persist
across multiple submissions)?

None of these questions can be easily asked using CVS
based representations. We developed a schema/abstraction
for representing program histories that make answering these
questions much easier. A diagram of the schema is shown in
Figure 1. Each entity/class is shown as a box, with arrows to
other entities it has references to. This schema can be rep-
resented in a relational database, and most of the queries
we want to ask can be directly formulated as SQL queries.

The schema we have developed is based on recognizing
unique lines of a file. For example, we might determine
that a particular line, with a unique key of 12638 and the
text “ i++; ”, first occurs on line 25 of version 3 of the
file “Foo.java”, occurs on line 27 in version 4 (because two
lines were inserted before it), occurs on line 20 in version 5
(because 7 lines above it were deleted in going from version
4 to version 5) and that version 5 is the last version unique
line #12638 occurs.

It is important to understand that unique lines are not
based on textual equality. Other occurrences of “ i++; ”
in the same file or other files would be different unique lines.
If a line containing “ i++; ” is reinserted in version 11,
that is also a different unique line.

So in our database, we have a table that gives, for each line
number of each file version, the primary key of the unique
line that occurs at that line number.

UniqueLine
text
firstFileVersion
lastFileVersion
commentEquivClass
smallEditEquivClass

UniqueLineLocation
uniqueLine
fileVersion
lineNumber

FileVersion
file
versionNumber
timeStamp

Snapshot
timeStamp

SnapshotContents
snapShot
fileVersion

TestRun
snapShot
testCase

TestCase
testName

CodeCoverage
testRun
uniqueLineLocation

MethodLocation
method
fileVersion
firstLineNumber
lastLineNumber

Method
methodName

FindBugsWarnings
warning
uniqueLineLocation

CommentEquivClass
firstFileVersion
lastFileVersion

SmallEditEquivClass
firstFileVersion
lastFileVersion

Exception
testRun
exceptionClass
exceptionMessage

StackTraceEntry
exception
depth
uniqueLineLocation

Figure 1: Schema for representing program evolution

4.1 Tracking Lines and Equivalence Classes
As given, two lines are considered identical only if they

are textually identical: changing a comment or indentation
makes it a different unique line. While we sometimes want
to track changes at this granularity, we often want to track
lines across versions as their comments are changed or even
as small modifications are made.

We handle this by defining equivalence classes over unique
lines of text. At the moment, we support the following
equivalence relations:

• Identity: The lines are exactly identical.

• Ignore-Whitespace: When whitespace is ignored, the
lines are identical.

• Ignore-SmallEdits: When whitespace is ignored, the
lines are almost equal; their edit distance is small.

• Ignore-Comments: When whitespace and comments
are ignored, the edit distance between the lines is small.

These equivalence relations are ordered from strictest to
most relaxed. Thus, the lines ” a = b + c.foo(); ” and
“a = b + x.foo(); /* Fixed bug */ “ belong to the same
Ignore-Comments and Ignore-SmallEdits equivalence classes,
but not to the same Ignore-Whitespace and Identity equiva-
lence classes. The equivalence classes are used to track indi-
vidual lines as they evolve, not to identify textually similar
lines of text.

There are various rules associated with identifying these
unique lines and equivalence classes in a file:

• No crossings: If a line belonging to equivalence class
X occurs before a line belonging to equivalence class

Y in version 5 of a file, then in all versions in which
lines belonging to equivalence classes X and Y occur,
the line belonging to equivalence class X must occur
before the line belonging to equivalence class Y.

• Unique representatives: In each version, only one line
may belong to any given equivalence class.

• Nested equivalence classes: If two lines are equiva-
lent under one equivalence relation, then they must
be equivalent under all more relaxed relations.

The no crossing rule prevents us from recognizing cut-and-
paste operations, in which a block of code is moved from one
location to another. Recognizing and representing cut-and-
paste (and other refactoring operations) is a tricky issue
that we may try to tackle at some future point. However,
handling that issue well would also mean handling other
tricky issues, such as code duplication.

To calculate which lines belong to the same equivalence
class, we have implemented a variation of the “diff” com-
mand to discover groups of mismatched lines, or deltas, be-
tween two versions. Our diff algorithm recursively computes
deltas under increasingly relaxed equivalence relations. First,
we find all deltas under the Identity relation, which is the
strictest. For each delta, we apply the algorithm recur-
sively, using the next strictest equivalence relation to com-
pare lines. The final result is a “diff” of the versions for each
equivalence relation. Because the recursive step of the algo-
rithm only considers those deltas computed under stricter
equivalence relations, the algorithm respects the three rules
above.

4.2 Methods

Since we will sometimes wish to track which methods are
modified by a change or covered by a test case, we also store,
for each file version, the first and last line number associated
with a method.

4.3 Other information
We represent a number of additional forms of information

in our database. A snapshot consists of a set of file versions
taken at some moment in time. Usually, a snapshot repre-
sents a compilable, runnable and testable snapshot of the
system.

Associated with a snapshot we can have test results and
code coverage results. Typically, each project will have a
dozen or more unit test cases. We run all of the unit tests
on each snapshot, and also record which lines are covered
by each test case. If a test case terminates by throwing an
exception, we record the exception and stack trace in the
database. The information we have linking lines in different
versions of a file allows us to easily compare code coverage
in different versions, or correlate code coverage with static
analysis warnings or exceptions generated during test cases.

5. RELATED WORK
Many systems exist to automatically collect and test stu-

dent submissions: some examples are [11, 6, 7, 4]. Our con-
tribution is to control students’ access to information about
test results in a way that provides incentives to adopt good
programming habits.

In [9], Liu et. al. study CVS histories of students working
on a team project to better understand both the behavior
of individual students and team interactions. They found
that both good and bad coding practices had characteristic
ways of manifesting in the CVS history. Our goals for the
data we collect with our automatic code snapshot system
are similar, although we consider individual students rather
than teams. Our system has the advantage of capturing
changes at a finer granularity: file modification, rather than
explicit commit.

In [12], Schneider et al. advocate using a “shadow repos-
itory” to study a developer’s fine-grained local interaction
history in addition to milestone commits. This approach
to collecting and studying snapshots is similar to our work
with Marmoset. The principal difference is that we are not
focused on large software projects with multiple developers,
and so we can use a standard version control system such as
CVS to store the local interactions.

In [4], Edwards presents a strong case for making unit
testing a fundamental part of the Computer Science cur-
riculum. In particular, he advocates requiring students to
develop their own test cases for projects, using project so-
lutions written by instructors (possibly containing known
defects) to test the student tests. This idea could easily be
incorporated into Marmoset.

6. ACKNOWLEDGMENTS
The second author is supported in part by a fellowship

from the National Physical Science Consortium and stipend
support from the National Security Agency.

7. REFERENCES
[1] CheckStyle. http://checkstyle.sourceforge.net, 2005.

[2] CVS. http://www.cvshome.org, 2004.

[3] Eclipse.org main page. http://www.eclipse.org, 2004.

[4] S. H. Edwards. Rethinking computer science
education from a test-first perspective. In Companion
of the 2003 ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
Anaheim, CA, October 2003.

[5] D. Hovemeyer and W. Pugh. Finding Bugs is Easy. In
Companion of the 19th ACM Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, Vancouver, BC, October 2004.

[6] D. Jackson and M. Usher. Grading student programs
using ASSYST. In Proceedings of the 1997 SIGCSE
Technical Symposium on Computer Science Education,
pages 335–339. ACM Press, 1997.

[7] E. L. Jones. Grading student programs - a software
testing approach. In Proceedings of the fourteenth
annual consortium on Small Colleges Southeastern
conference, pages 185–192. The Consortium for
Computing in Small Colleges, 2000.

[8] JUnit, testing resources for extreme programming.
http://junit.org, 2004.

[9] Y. Liu, E. Stroulia, K. Wong, and D. German. Using
CVS historical information to understand how
students develop software. In Proceedings of the
International Workshop on Mining Software
Repositories, Edinburgh, Scotland, May 2004.

[10] PMD. http://pmd.sourceforge.net, 2005.

[11] K. A. Reek. A software infrastructure to support
introductory computer science courses. In Proceedings
of the 1996 SIGCSE Technical Symposium on
Computer Science Education, Philadelphia, PA,
February 1996.

[12] K. A. Schneider, C. Gutwin, R. Penner, and
D. Paquette. Mining a software developer’s local
interaction history. In Proceedings of the International
Workshop on Mining Software Repositories,
Edinburgh, Scotland, May 2004.

[13] J. Spacco, D. Hovemeyer, and W. Pugh. An
eclipse-based course project snapshot and submission
system. In 3rd Eclipse Technology Exchange Workshop
(eTX), Vancouver, BC, October 24, 2004.

